Inversion of Configuration at the Metal in Diastereomeric Imido Alkylidene Monoaryloxide Monopyrrolide Complexes of Molybdenum

Smaranda C. Marinescu, ${ }^{\ddagger}$ Richard R. Schrock, ${ }^{*, \ddagger}$ Bo Li, ${ }^{\dagger}$ and Amir H. Hoveyda ${ }^{\dagger}$
Department of Chemistry 6-331, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, and Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467

Received October 31, 2008; E-mail: rrs@mit.edu

Recently we discovered ${ }^{1}$ that $14 \mathrm{e} \mathrm{Mo}(\mathrm{NR})\left(\mathrm{CHR}^{\prime}\right)\left(\mathrm{OR}^{\prime \prime}\right)\left(\eta^{1}-\right.$ pyrrolide) (monoalkoxidepyrrolide, MAP) complexes can be prepared through addition of 1 equiv of alcohol to $\mathrm{Mo}(\mathrm{NR})\left(\mathrm{CHR}^{\prime}\right)$ (pyrrolide) ${ }_{2}$ complexes. ${ }^{2}$ Of particular interest in terms of enantioselective metatheses are diastereomers that are formed when the alkoxide or aryloxide is enantiomerically pure. A dramatic example is $\mathrm{Mo}(\mathrm{NAr})\left(\mathrm{CHCMe}_{2} \mathrm{Ph}\right)\left(\mathrm{Me}_{2} \mathrm{Pyr}\right)(\mathbf{1})(\mathbf{2}$, where $\mathrm{Ar}=2,6-$ diisopropylphenyl, $\mathrm{Me}_{2} \mathrm{Pyr}=2,5$-dimethylpyrrolide, and $\mathbf{1}$ is the monophenoxide derived from (R)-3,3'-dibromo-5,5', $6,6^{\prime}, 7,7^{\prime}, 8,8^{\prime}$-oc-tahydro-1,1'-bi-2-naphthol that is monoprotected with $\left.\mathrm{Si}(t-\mathrm{Bu}) \mathrm{Me}_{2}\right)$ that serves as an initiator for an asymmetric ring-closing of an intermediate in the enantioselective synthesis of the Aspidosperma alkaloid, quebrachamine, ${ }^{3}$ a reaction that yielded no product when several chiral $\mathrm{Mo}(\mathrm{NR})\left(\mathrm{CHR}^{\prime}\right)($ diolate $)$ catalysts ${ }^{4}$ were employed. Initiator $\mathbf{2}$ can be prepared in situ and is effective (95% ee) at relatively low loadings as a $7: 1$ mixture of diastereomers. Two issues that arise concern the relative reactivity of diastereomers and their interconversion through inversion of configuration at the metal. Therefore we turned to an exploration of reactions between the diastereomers and 2 e donors such as PMe_{3}, which are models ${ }^{5}$ for the initial unobserved olefin adduct, ${ }^{6}$ and the conditions under which inversion of configuration at Mo might take place.

A 7:1 mixture of the two diastereomers of $\mathrm{Mo}(\mathrm{NAr})\left(\mathrm{CHCMe}_{2} \mathrm{Ph}\right)$ $\left(\mathrm{Me}_{2} \mathrm{Pyr}\right)(\mathbf{1})\left((S) \mathbf{- 2}\right.$ and $(R) \mathbf{- 2}$, respectively $\left.{ }^{3,7}\right)$ is generated upon addition of $(R)-\mathbf{1 H}$ to $\mathrm{Mo}(\mathrm{NAr})\left(\mathrm{CHCMe}_{2} \mathrm{Ph}\right)\left(\mathrm{Me}_{2} \mathrm{Pyr}\right)_{2}{ }^{1}$ Pure (S) $\mathbf{2}^{3}$ and pure $(R)-\mathbf{2}^{8}$ have both been isolated and structurally characterized. Each is unchanged in $\mathrm{C}_{6} \mathrm{D}_{6}$ or THF- d_{8} after a week at 22 or $40^{\circ} \mathrm{C}$. The alkylidene is in the syn orientation in the solid state and in solution judging from the J_{CH} value $(118 \mathrm{~Hz}$ in $(S)-\mathbf{2}$ and 122 Hz in (R)-2).
Trimethylphosphine (15 equiv) was added to pure (S)-2 ([Mo] $=$ 0.1 M , pentane). The solution was stored for several hours at $22^{\circ} \mathrm{C}$, and crystals of a phosphine adduct were isolated in good yield (75%). An X-ray structural study revealed that the product is $(R)-\mathbf{2}\left(\mathrm{PMe}_{3}\right)$, not (S)-2 $\left(\mathrm{PMe}_{3}\right)$. The overall structure is closest to a square pyramid with the syn-alkylidene in the apical position (Figure 1) and PMe_{3} trans to the pyrrolide. The $\mathrm{N} 2-\mathrm{Mo}-\mathrm{P} 1$ angle is $165.00(10)^{\circ}$, and the $\mathrm{N} 1-\mathrm{Mo}-\mathrm{O} 1$ angle is $158.12(14)^{\circ}$, while the angles between C 45 and the four other atoms bound to Mo are $100.31(17)^{\circ}$ (to N1), $106.29(15)^{\circ}$ (to N 2), $100.75(15)^{\circ}$ (to O1), and $85.61(12)^{\circ}$ (to P1). The $\mathrm{Mo}-\mathrm{P} 1$ distance $(2.5703(11) \AA$) is relatively long and the $\mathrm{Mo}-\mathrm{P}$ bond likely to be relatively weak.

When (R)-2 $\left(\mathrm{PMe}_{3}\right)$ is dissolved in $\mathrm{C}_{6} \mathrm{D}_{6}$ or toluene- d_{8}, largely (R)-2 and free PMe_{3} are observed at room temperature. At a concentration of initial (R)-2 $\left(\mathrm{PMe}_{3}\right)$ equal to 10 mM at $-30^{\circ} \mathrm{C}$, largely (R)-2 $\left(\mathrm{PMe}_{3}\right)$ is observed, while at $40^{\circ} \mathrm{C}$ only free PMe_{3} and $(R)-2$ are observed. Over a period of 8 h at $40^{\circ} \mathrm{C},(R)-\mathbf{2}$ is converted into an equilibrium

[^0]

Figure 1. POV-ray drawing of $(R) \mathbf{- 2}\left(\mathrm{PMe}_{3}\right)$. Thermal ellipsoids are displayed at 50% probability level. Hydrogen atoms are omitted.
mixture of $(R)-\mathbf{2}$ and $(S)-\mathbf{2}\left(K_{\text {eq }}=[(S)-\mathbf{2}] /[(R)-\mathbf{2}]=2.0\right.$ at $\left.40^{\circ} \mathrm{C}\right)$. The approach to equilibrium at $40{ }^{\circ} \mathrm{C}$ depends on PMe_{3} concentration to the first order (as shown in runs between 10 and 50 mM total PMe_{3} concentration) and follows classic behavior, ${ }^{9}$ with $k_{R S}+k_{S R}=9.0 \times$ $10^{-3} \mathrm{M}^{-1} \mathrm{~s}^{-1}$. In THF- d_{8} at $40^{\circ} \mathrm{C}, k_{R S}+k_{S R}=14 \times 10^{-3} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ $\left(K_{\text {eq }}=2.0\right)$, and in $1: 1$ acetonitrile- $d_{3} / \mathrm{C}_{6} \mathrm{D}_{6}$ at $40^{\circ} \mathrm{C}, k_{R S}+k_{S R}=24$ $\times 10^{-3} \mathrm{M}^{-1} \mathrm{~s}^{-1}\left(K_{\text {eq }}=0.8\right)$. (In the absence of PMe_{3} in the last experiment, $\sim 5 \%$ inversion can be observed after several days at 60 ${ }^{\circ} \mathrm{C}$; therefore, inversion by acetonitrile is extremely slow compared to inversion by PMe_{3}.) All results are consistent with PMe_{3}-catalyzed interconversion of $(R)-2$ and (S)-2.

Inversion at Mo is also catalyzed by $\mathrm{PPh} \mathrm{Me}_{2}$ and (neat) pyridined_{5}. For $1 \mathrm{M} \mathrm{PPhMe}_{2}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ at $40^{\circ} \mathrm{C}, k_{R S}+k_{S R}=1.5 \times 10^{-5} \mathrm{M}^{-1}$ $\mathrm{s}^{-1}, 600$ times slower than the PMe_{3}-catalyzed reaction. Inversion by pyridine- d_{5} and (very slowly) acetonitrile (see above) rules out any required reaction between the 2 e donor ligand and some ligand bound to the metal (e.g., between the phosphine and the alkylidene to yield an intermediate and unobservable ylide complex). The lack of any dramatic solvent effect argues against ionization to yield a fourcoordinate cation with pyrrolide or aryloxide as the anion.

Mixtures of largely (S)-2, $(S)-\mathbf{2}\left(\mathrm{PMe}_{3}\right)$, and PMe_{3} (2 equiv) in toluene- d_{8} between -30 and $22{ }^{\circ} \mathrm{C}$ were examined by ${ }^{1} \mathrm{H}$ NMR, and formation of $(R)-\mathbf{2}$ and $(R)-\mathbf{2}\left(\mathrm{PMe}_{3}\right)$ was monitored. After ~ 6 h at $22{ }^{\circ} \mathrm{C}$, four phosphine adducts were observed, $(S)-\mathbf{2}\left(\mathrm{PMe}_{3}\right)$ $\left(\delta \mathrm{H}_{\alpha}=15.51 \mathrm{ppm}\right.$ at $\left.-30^{\circ} \mathrm{C}, J_{\mathrm{CH}}=121 \mathrm{~Hz}, J_{\mathrm{HP}}=5 \mathrm{~Hz}\right),(S)-$ $\mathbf{2}^{\prime}\left(\mathrm{PMe}_{3}\right)\left(\sim 20 \%\right.$ of total (S) adduct; $\delta \mathrm{H}_{\alpha}=13.94 \mathrm{ppm}, J_{\mathrm{HP}}=6$ $\mathrm{Hz}),(R)-2^{\prime}\left(\mathrm{PMe}_{3}\right)\left(\sim 5 \%\right.$ of total (R) adduct; $\delta \mathrm{H}_{\alpha}=14.86 \mathrm{ppm}$, $\left.J_{\mathrm{HP}}=8 \mathrm{~Hz}\right)$, and $(R)-2\left(\mathrm{PMe}_{3}\right)\left(\delta \mathrm{H}_{\alpha}=13.83 \mathrm{ppm}, J_{\mathrm{CH}}=122 \mathrm{~Hz}\right.$, $J_{\mathrm{HP}}=7 \mathrm{~Hz}$), along with $(S)-2$ and $(R)-2$; the amount of each depends upon time, temperature, concentration, and the amount of PMe_{3} present. In all four adducts, coupling of the alkylidene H_{α} proton
to ${ }^{31} \mathrm{P}$ is lost as the temperature is raised, equilibria shift toward phosphine free species, and (S)-2 and (R)-2 interconvert.

To further identify the adducts, ${ }^{15} \mathrm{~N}$ - or ${ }^{13} \mathrm{C}$-labeled analogues were prepared. In analogues that contain ${ }^{15} \mathrm{~N}$-labeled dimethylpyrrolide, couplings of ${ }^{15} \mathrm{~N}$ to ${ }^{31} \mathrm{P}$ are 24.1 Hz in $(S)-2\left(\mathrm{PMe}_{3}\right), 26.5 \mathrm{~Hz}$ in (S) $2^{\prime}\left(\mathrm{PMe}_{3}\right), 31.6 \mathrm{~Hz}$ in $(R)-\mathbf{2}^{\prime}\left(\mathrm{PMe}_{3}\right)$, and 26.5 Hz in $(R)-\mathbf{2}\left(\mathrm{PMe}_{3}\right)$. Since pyrrolide is trans to PMe_{3} in $(R)-\mathbf{2}\left(\mathrm{PMe}_{3}\right)$, we propose that it is trans to the pyrrolide in all four adducts. In analogous ${ }^{13} \mathrm{C}_{\alpha}$-labeled neopentylidene complexes, $(R)-2^{\prime}\left(\mathrm{PMe}_{3}\right)(<5 \%$ of total adducts) was identified as an anti species ($J_{\mathrm{CH}}=143 \mathrm{~Hz}$), while $(S)-\mathbf{2}^{\prime}\left(\mathrm{PMe}_{3}\right)$ is $\operatorname{syn}\left(J_{\mathrm{CH}}=120 \mathrm{~Hz}\right)$; the difference between $(S)-\mathbf{2}^{\prime}\left(\mathrm{PMe}_{3}\right)$ and (S) $\mathbf{2}\left(\mathrm{PMe}_{3}\right)$ is ascribed to different conformations of the aryloxide in the crowded environment. NOESY studies confirm (R) and (S) assignments.

All data are consistent with inversion at Mo in fluxional fivecoordinate adducts. In terms of trigonal bipyramidal (TBP) intermediates (as shown in eq $1 ;$ SP species analogous to the observed structure of $(R) \mathbf{-}\left(\mathrm{PMe}_{3}\right)$ in the solid state are alternatives), L enters trans to the pyrrolide (Pyr) to give $(R)\left(\mathrm{L}_{\text {Pyr }}\right)$. A series of Berry pseudorotations or (equivalent) turnstile rearrangements ${ }^{10}$ permutes the alkylidene and imido positions to give $(S)\left(L_{\text {Pyr }}\right)$, from which L leaves trans to Pyr to give (S)-2. Entry and exit of L only trans to Pyr in the two diastereomers is consistent with the structure of $(R)-\mathbf{2}\left(\mathrm{PMe}_{3}\right)$ and is the most unifying proposal in our opinion. Catalyzed inversion at M by PMe_{3} is the most efficient, and a PMe_{3} adduct is the only one that can be isolated.

We then turned to an exploration of reactions between (S) - or $(R)-\mathrm{Mo}(\mathrm{NAr})\left(\mathrm{CHCMe}_{2} \mathrm{Ph}\right)\left(\mathrm{Me}_{2} \mathrm{Pyr}\right)(\mathbf{1})$ and ethylene, which is often generated in ring-closing reactions of terminal or 1,1-disubstituted olefins. These reactions give rise to observable (S)- or (R) $\operatorname{Mo}(\mathrm{NAr})\left(\mathrm{CH}_{2}\right)\left(\mathrm{Me}_{2} \mathrm{Pyr}\right)(\mathbf{1})\left(67 \%\right.$ at $10{ }^{\circ} \mathrm{C}, \delta \mathrm{H}_{\alpha}=12.35,12.13$; 33% at $\left.10{ }^{\circ} \mathrm{C}, \delta \mathrm{H}_{\alpha}=12.94,12.24\right)$ and $\mathrm{Mo}(\mathrm{NAr})\left(\mathrm{CH}_{2} \mathrm{CH}_{2}-\right.$ $\left.\mathrm{CH}_{2}\right)\left(\mathrm{Me}_{2} \mathrm{Pyr}\right)(\mathbf{1})\left(\right.$ at $-70{ }^{\circ} \mathrm{C}, \delta \mathrm{H}_{\alpha}=6.16,5.69,5.24,5.03 ; \delta \mathrm{H}_{\beta}$ $=0.74,-0.16$). The two interconvert readily on the NMR time scale (at $22{ }^{\circ} \mathrm{C}$) through gain and loss of ethylene, respectively. Although $\mathrm{Mo}(\mathrm{NAr})\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)\left(\mathrm{Me}_{2} \mathrm{Pyr}\right)(\mathbf{1})$ loses ethylene readily, and therefore is not likely to be isolable, its NMR parameters are analogous to those of $\mathrm{W}(\mathrm{NAr})\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)\left(\mathrm{Me}_{2} \mathrm{Pyr}\right)(\mathbf{1})$, which has been isolated and shown in an X-ray structure to be an essentially undistorted TBP with apical imido and aryloxide ligands and dimethylpyrrolide in the equatorial plane. ${ }^{11}$ (Reactions involving ethylene and Mo and W MAP species will be reported in detail separately.) It is clear that inversion at the metal can be fast on the NMR time scale near room temperature.

We propose that an olefin attacks the metal in MAP species trans to the pyrrolide ligand to form an intermediate metallacyclobutane that contains the pyrrolide and two carbons of the resulting metallacycle in equatorial positions (e.g., eq 2). The product olefin

(ethylene in this example) then leaves trans to the pyrrolide to generate the new alkylidene $(M=C H R$ in this case) with the opposite configuration at M . In effect, the reactant olefin enters "trans" to the pyrrolide and the product olefin leaves "trans" to the pyrrolide, all via an intermediate TBP with axial imido and aryloxide ligands, inverting the configuration at M with each
metathesis step. This proposal is consistent with recent calculations ${ }^{6}$ if it is assumed that pyrrolide is a "donor" relative to the aryloxide (the "acceptor," relatively), and with the preferred approach of PMe_{3} described above.
It seems likely that inversion at M by an olefin will be faster than a reaction that involves rearrangement of a five-coordinate olefin adduct, in part because a metallacyclobutane ring forms rapidly. (There is only one reported observation of an olefin adduct of a high oxidation state alkylidene. ${ }^{12}$) That being said, it also should be noted that rearrangement of the five-coordinate metallacyclobutane itself might compete with loss of olefin in circumstances where the metallacyclobutane lifetime is relatively long, i.e., in tungstacyclobutane species. The speed of metathesis/inversion at M is expected to vary widely and exceptionally finely as steric interactions generated in reactions between a given diastereomer and a given olefin become more significant and unavoidable.

To the best of our knowledge, it has not been possible to probe "inversion" at a catalytically competent tetrahedral transition metal center to which four ligands are covalently bound, especially if one of those ligands is exchanged during catalysis/inversion. Inversion at M in imido alkylidene complexes is a central issue in the context of enantioselective metathesis reactions that involve MAP species. ${ }^{3,8}$ Lastly, controlling inversion at the metal is key to the long-sought goal of employing "stereogenic-at-metal" complexes for possibly more efficient enantioselective reactions. ${ }^{13}$

Acknowledgment. This research was funded by the National Science Foundation (CHE-0554734 to R.R.S.) and the National Institutes of Health (GM-59426 to R.R.S. and A.H.H.). We thank S. J. Malcolmson and S. J. Meek for discussions concerning five-coordinate rearrangements. We thank Dr. A. Sinha for preparing the sample of $\mathrm{Mo}(\mathrm{NAr})\left({ }^{13} \mathrm{CHCMe}_{3}\right)(\mathrm{OTf})_{2}(\mathrm{dme})$.

Supporting Information Available: Experimental details and crystallographic data (CIF). This material is available free of charge via the Internet at http://pubs.acs.org.

References

(1) Singh, R.; Schrock, R. R.; Müller, P.; Hoveyda, A. H. J. Am. Chem. Soc. 2007, 129, 12654.
(2) Hock, A.; Schrock, R. R.; Hoveyda, A. H. J. Am. Chem. Soc. 2006, 128, 16373.
(3) Malcolmson, S. J.; Meek, S. J.; Sattely, E. S.; Schrock, R. R.; Hoveyda, A. H. Nature, published online November 16, 2008, doi: 10.1038/ nature07594.
(4) (a) Schrock, R. R.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2003, 42, 4592. (b) Schrock, R. R.; Czekelius, C. C. Adv. Synth. Catal. 2007, $349,55$.
(5) (a) Schrock, R. R.; Crowe, W. E.; Bazan, G. C.; DiMare, M.; O'Regan, M. B.; Schofield, M. H. Organometallics 1991, 10, 1832. (b) Schrock, R. R.; Gabert, A. J.; Singh, R.; Hock, A. S. Organometallics 2005, 24, 5058. (c) Gabert, A. J.; Schrock, R. R.; Müller, P. Chem. Asian J. 2008, 3, 1535. (d) Adamchuk, J.; Schrock, R. R.; Tonzetich, Z. J.; Müller, P. Organometallics 2006, 25, 2364. (e) Feldman, J.; Schrock, R. R. Prog. Inorg. Chem. 1991, 39, 1 .
(6) Poater, A.; Solans-Monfort, X.; Clot, E.; Coperet, C.; Eisenstein, O. J. Am. Chem. Soc. 2007, 129, 8207.
(7) To be less cumbersome, this notation will substitute for the full description of the diastereomers, i.e., $\left(S_{M}\right)\left(R_{1}\right)-\mathbf{2}$ and $\left(R_{M}\right)\left(R_{1}\right)-\mathbf{2}$.
(8) Meek, S. J.; Malcolmson, S. J.; Li, B.; Schrock, R. R.; Hoveyda, A. H., unpublished results.
(9) Moore, J. W.; Pearson, R. G. Kinetics and Mechanism, 3rd ed.; John Wiley \& Sons: New York, 1981.
(10) (a) Berry, R. S. J. Chem. Phys. 1960, 32, 933. (b) Gillespie, P.; Hoffman, P.; Klusacek, H.; Marquarding, D.; Pfohl, S.; Ramirez, R.; Tsolis, E. A.; Ugi, I. Angew. Chem., Int. Ed. 1971, 10, 687. (c) Westheimer, F. H. Acc. Chem. Res. 1968, 1, 70. (d) Ramirez, F. Acc. Chem. Res. 1968, 1, 168. (e) Mislow, K. Acc. Chem. Res. 1970, 3, 321. (f) Muetterties, E. L. Acc. Chem. Res. 1970, 3, 266. (g) Muetterties, E. L. J. Am. Chem. Soc. 1969, 91, 1636. (h) Muetterties, E. L. J. Am. Chem. Soc. 1969, 91, 4115.
(11) Jiang, A.; Schrock, R. R.; Hoveyda, A. H., unpublished results.
(12) Kress, J.; Osborn, J. A. Angew. Chem., Int. Ed. Engl. 1992, 31, 1585.
(13) (a) Brunner, H. Angew. Chem., Int. Ed. 1999, 38, 1194. (b) Fontecave, M.; Hamelin, O.; Ménage, S. Top. Organomet. Chem. 2005, 15, 271.
JA808308E

[^0]: * Massachusetts Institute of Technology.
 ${ }^{\dagger}$ Boston College.

